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Surface electromagnetic waves propagating along an anisotropically conducting interface of two different
dielectrics have been theoretically investigated. The flat surface of the interface contains a one-dimensional
array of thin metal wires. It was assumed that both the lattice constant of the array and the diameter of the
wires are far less than the lengths of the surface waves. It has been shown that the surface electromagnetic
waves may propagate along the interface at frequencies which are far lower than the plasma frequency of a
metal, and the electric field of the waves is always perpendicular to the wires in any propagation directions.
The existence conditions, dispersion relations, and energy fluxes of the surface waves have been derived. It has
been demonstrated that the surface electromagnetic waves can be excited by means of the transition radiation
and beam instability effects.
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I. INTRODUCTION

Nowadays a good deal of attention is focused on studies
into the properties of surface electromagnetic waves
�SEMWs� because they are extensively used in modern elec-
tronic devices. The SEMWs with TM polarization referred to
as the surface plasmon polaritons �SPPs� are used for up-to-
date applications, such as plasmon waveguides, aperture ar-
rays for enhanced light transmission, and various geometries
for surface-enhanced sensing.1 The concept of a waveguide
for SPPs is based upon the insulator/metal/insulator structure
that consists of a thin metal stripe �on the order of 10 nm�
sandwiched between two thick dielectrics. If the strip is em-
bedded in a homogeneous dielectric host, the multilayer sys-
tem sustains the long-ranging SPP mode that can propagate
for distances over multiple millimeters in the near infrared
�see Ref. 2�. The long-range SPP propagation along sub-
wavelength nanowires has been investigated in Ref. 3. We
should like to highlight the so-called designer SPPs on cor-
rugated surfaces. In Refs. 4 and 5 it has been shown that the
SPP-like bound electromagnetic surface waves �the designer
SPPs� at tetrahertz �THz� frequencies can be sustained by a
perfect conductor with the periodically corrugated surface.
The dispersion relation of such surface waves can be engi-
neered via the geometry of the surface. The effects of propa-
gation and focusing of THz SPPs on periodically corrugated
metal wires have been found in Ref. 6. The well-bounded
SEMWs guided by metallic wedges �the so-called wedge
plasmon polaritons� at a telecom wavelength have been theo-
retically studied in Ref. 7.

In the present paper we have looked into the possibility of
well-bounded SEMWs propagation at the flat interface of
two different nonabsorbing dielectrics in the case where the
interface contains an array of perfectly conducting parallel
thin wires �say, metal wires�. The lattice constant of the array
and the diameter of wires are supposed to be far less than the
wavelength. The SEMWs under consideration can likewise
be called as the designer SEMWs because these waves
propagate along the artificial interface at frequencies which
are far lower than the metal plasma frequency �p

=�4�e2N /m �where e is the electron charge, N is the bulk
electron density, and m is the electron effective mass�.

II. DISPERSION EQUATION AND ENERGY FLUX

Let the flat interface of two nonabsorbing dielectric media
be located in xz plane �see Fig. 1�. The half space y�0 is
described by dielectric constant �1 and the half space y�0 is
described by dielectric constant �2. The infinite one-
dimensional array of parallel thin metal wires is placed in the
interface plane. The lattice constant d1 of the array along
with the diameter of wires d2 are taken to be far less than the
wavelength of the SEMW �i.e., d1 ,d2�� where � is the
SEMW wavelength�. Because the lattice constant of the ar-
ray and the wires diameter is far less than the wavelength,
the interface can be interpreted as a homogeneous surface
with anisotropic conducting properties. This fact allows the
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FIG. 1. �Color online� Geometry of the problem.
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use of the homogeneous boundary condition at the interface.8

Now show that the SEMWs with components
�Ex� ,Ey� ,0�, �Hx� ,Hy� ,Hz�� �where �=1,2 is the number of
the dielectric medium� can propagate at frequencies where
the conductivity of metal wires is an infinitely large. This
implies that the frequencies of SEMWs is far lower than �p
and, therefore, the metal may be considered as a perfect con-
ductor. For metals in which the bulk electron density N is of
the order of N�1028 m−3 and the electron effective mass m
is equal to the mass of a free electron m0 we obtain �p�5
�1015 s−1. Hence, the condition ���p can be fulfilled at
THz frequencies or lower.

We specify the fields of SEMWs as

E� � = E� 0� exp�i�	�
� + ky�y − �t�� , �1�

H� � = H� 0� exp�i�	�
� + ky�y − �t�� , �2�

where 	� = �kx ,kz� is the wave vector in xz plane, 
� = �x ,z� is
the radius vector in xz plane

ky1 = − i�	2 −
�2

c2 �1, ky2 = i�	2 −
�2

c2 �2, �3�

where c is the speed of light in vacuum. The signs in the
right-hand sides of Eq. �3� are due to the confinement of
SEMWs to the interface. Consider the Maxwell equations for
electromagnetic fields in dielectric media

� � H� � =
��

c

�E� �

�t
, � � E� � = −

1

c

�H� �

�t
, �4�

div E� � = 0, div H� � = 0. �5�

From Eqs. �4� and �5� we obtain the following expressions
for the components of electric and magnetic fields:

Ey� = −
kx

ky�

Ex�, Hx� =
ckxkz

�ky�

Ex�. �6�

Hy� =
ckz

�
Ex�, Hz� = −

c�kx
2 + ky�

2 �
�ky�

Ex�. �7�

In order to derive the dispersion relation for SEMWs it is
necessary to satisfy a certain continuity conditions at y=0,
namely, the continuity conditions for the tangential compo-
nents of the electric Ex� and magnetic Hz� fields

Ex1�0� = Ex2�0�, Hz1�0� = Hz2�0� . �8�

It should be noted that both the normal component of the
electric displacement Dy�=�lEy� and tangential component
of magnetic field Hx� suffer discontinuities caused by excita-
tion of surface current in the wires. The discontinuity of Dy�

is equal to the surface charge density n2D and the disconti-
nuity of Hx� is equal to the surface current density jz

2D

�2Ey2�0� − �1Ey1�0� = 4�en2D, �9�

Hx2�0� − Hx1�0� = −
4�

c
jz
2D, �10�

where n2D�exp�i�kzz−�t�� and jz
2D�exp�i�kzz−�t�� satisfy

the continuity equation

�en2D

�t
+

� jz
2D

�z
= 0. �11�

From Eqs. �6�, �7�, and �9�–�11� we obtain the expressions
connecting the field components Ex� with the surface current
density jz

2D

Ex1�0� =
4�ky1

�kxkz��2 − �1�
��2

c2 �2 − kz
2� jz

2D, �12�

Ex2�0� =
4�ky2

�kxkz��2 − �1�
��2

c2 �1 − kz
2� jz

2D. �13�

Substituting Eqs. �6� and �7� into Eq. �8�, we find the disper-
sion relation for SEMWs

1

ky2
��2

c2 �2 − kz
2� =

1

ky1
��2

c2 �1 − kz
2� . �14�

Using the definitions of ky1 and ky2 from Eq. �3�, the disper-
sion relation, Eq. �14�, can be rewritten as the quadratic
equation of �2 with the following roots:

����
2 =

c2kz
2

2�1�2 cos2 �
��2 + �1 � ���2 − �1�2 + 4�1�2 sin4 �� ,

�15�

where � is the angle between vector 	� and the positive di-
rection of axis z �see Fig. 1�, tan2 �=kx

2 /kz
2. Note that only

one of two roots in Eq. �15� has a physical meaning and
corresponds to sought SEMWs. In order to choose the appro-
priate root, we have to formulate the additional conditions of
SEMWs existence. For the sake of definiteness, we suppose
that

�1 � �2.

Then the existence conditions can be written as

�2

c2 �2 � 	2,
�2

c2 �1 � kz
2 �

�2

c2 �2. �16�

Substituting Eq. �15� into Eq. �16� and performing necessary
calculations, we find that the existence conditions are ful-
filled at �2=��−�

2 for 0���� /2. Henceforward, we will
omit index “−” at �2.

For �→� /2 �i.e., for kx
2
kz

2� the solution for �2 takes the
form

�2 	
2c2kz

2

�1 + �2
. �17�

It is worthwhile to emphasize that the SEMWs described by
dispersion relation in Eq. �17� closely resemble the so-called
surface helicons.9 By making the analogy with the system
investigated in Ref. 9, one can see that in the case under
consideration the wires made of a perfect conductor act as
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the magnetic field in Ref. 9. In addition, the waves described
by dispersion relation in Eq. �17� are the delayed ones, i.e.,
their phase velocities vph are far lower than the speed of light
in vacuum

vph 	 c� 2

�1 + �2
��

2
− ��2

, �18�

where 0�� /2−��1. Hereafter, we will demonstrate that
this particular property allows an effective coupling of the
delayed waves and an electron-beam wave.

Figure 2 shows the kz dependence of � /c for a number of
kx values at �1=1 and �2=2. In Fig. 2 curve 1 corresponds to
the light line of dielectric 2�kx=0�, curve 2 is for kx=5
�104 m−1, curve 3 is for kx

2
kz
2 �i.e., �→� /2�, and curve 4

is the light line of dielectric 1. The dispersion curves that
correspond to 0�kx�� lie in the range between curve 1 and
curve 3. Let us examine the confinement of the SEMWs by
taking a closer look at their dispersion curves.

As seen from Fig. 2, for kz→0 the dispersion curve 2
asymptotically approaches curve 3. It means that the
SEMWs propagate almost perpendicular to the wires. In this
case, specifically for kz→0 and kx�0, the frequency � is
approximately described by Eq. �17� and the localization
depth ��=2� / 
ky�
 goes to the wavelength �=2� /	

��

�
=

	

�	2 − ���2/c2
→ 1. �19�

Note that the localization depth �� defines the evanescent
decay length of the field perpendicular to the interface,
which quantifies the confinement of the wave. From Eqs.
�15� and �19� it follows that for kz

2�kx
2 the decay length is

���� whereas for kz
2
kx

2 we get �1→� /�1−�1 /�2 and
�2→�. Indeed, for kz

2
kx
2 the dispersion curve 2 asymptoti-

cally approaches curve 1 and the waves extend over many
wavelength into dielectric 2. Therefore, the SEMWs are well
bounded in the both dielectric media, chiefly for kx

2
kz
2 with

��	�.

The � dependence �curve 1� of � / �ckz� for �1=1, �2=2 is
shown in Fig. 3. In Fig. 3 curve 2 corresponds to � / �ckz�
=1 /��2 and curve 3 is for � / �ckz�=�2 / ��1+�2�. As evident
from Fig. 3, the highest frequency can be achieved only by
SEMWs propagating almost perpendicular to the wires.

Note that for �1=�2 the z components of the SEMWs
magnetic field tend to zero on both sides of the interface and
the dispersion relation of the SEMWs becomes �=ckz /��.
These SEMWs may be thought of as a degenerate case of the
SEMWs considered above. The degeneracy occurs on the kx
component of the wave vector and it means that the SEMWs
with dispersion relation �=ckz /�� at any specified fre-
quency propagate over the entire angle interval 0��
�� /2 with phase velocities 0�vph�c /��. The possibility
of existence of the SEMWs with dispersion relation �
=ckz /�� was studied in Ref. 10. The excitation of the
SEMWs with dispersion relation �=ckz by an electric dipole
was investigated in Ref. 11.

Using the well-known expression for the time-averaged
Poynting vector, the energy flux of SEMWs in each of the
dielectrics can be expressed as

�S��� =
c

8�
Re�E� �,H� �

�� , �20�

where the angle brackets signify the averaging operation
over the field oscillation period. From Eqs. �6�, �7�, and �20�
we obtain the following expressions for �Sx�� , �Sz��:

�Sx�� =
c2kx

8��
ky�
2
��2

c2 �� − kz
2�
Ex�0�
2exp�− 2y Im�ky��� ,

�21�

�Sz�� =
c2kz

8��
ky�
2
�kx

2 + 
ky�
2�
Ex�0�
2exp�− 2y Im�ky��� .

�22�

Note that �Sy��=0 for the nonabsorbing dielectrics. As indi-
cated from Eqs. �21� and �22�, �Sx1��0, �Sx2��0, and

FIG. 2. �Color online� Dispersion curves of the SEMWs at the
interface between two different dielectrics for �1=1 and �2=2.
Curves 1 corresponds to the light line of dielectric 2�kx=0�, curve 2
is for kx=5�104 m−1, curve 3 is for kx

2
kz
2, and curve 4 is the light

line of the dielectric 1.

FIG. 3. �Color online� The angular dependence �curve 1� of the
normalized frequency of SEMWs for �1=1 and �2=2. Curve 2
corresponds to � / �ckz�=1 /��2 and curve 3 is for � / �ckz�
=�2 / ��1+�2�.
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�Sz1� , �Sz2��0 in accordance with conditions �16�. It can eas-
ily be shown that in the general case the tangential compo-
nent of the Poynting vector �S����= ��Sx�� , �Sz��� forms an
acute angle with wave vector 	� in both adjacent media

�S����	� =
c2

8��
ky�
2
�kx

2�2

c2 �� + kz
2
ky�
2�
Ex�0�
2

�exp�− 2y Im�ky��� � 0. �23�

It qualitatively differs, for instance, from the mutual orienta-
tion of vectors �S��� and 	� for SEMWs propagating at the
interface between a plasmalike medium and a dielectric. In-
deed, in a plasmalike medium �S���	� �0 and �S���	� �0 in a
dielectric. As seen from Eq. �23�, the product of �S���	� is
equal to zero when �→� /2. In this case the main part of the
energy flux propagates along the wires and the energy flux
components �Sz�� for �=1,2 become equal to each other

�Sx�� → 0, �Sz�� →
�

c
� 2

�1 + �2

jz

2D
2

�exp�− 2y Im�ky��� , �24�

where ky1=−
kx
 and ky2= 
kx
. The equal values of �Sz�� re-
sults from the equal decay lengths �� of SEMWs in the ad-
jacent media as �→� /2.

In the conclusion of this section, note that if we take into
account the finite conductivity of wires �, then the additional
SEMWs appear with the electric field polarized in the plane
that contains the “y” axis and the “z” axis �see Fig. 1�. As a
result, the dispersion relation of the superposition of the
SEMWs with Ez=0 and the additional SEMWs takes the
form

1

ky2
��2

c2 �2 − kz
2� −

1

ky1
��2

c2 �1 − kz
2�

= −
�

4��d2

�ky2 − ky1���2ky1 − �1ky2�
ky1ky2

. �25�

From Eq. �25� it is seen that in the limit of �→� the dis-
persion relation in Eq. �25� goes over into the dispersion
relation in Eq. �14�. Given the finite conductivity, leads to the
attenuation of the SEMWs in the propagation direction. For
instance, at �→� /2 the expression �17� becomes

�2 =
2c2kz

2

�1 + �2
− i

c3kx
2

��d2
�2��1 + �2�

. �26�

From Eq. �26� one can obtain the damping decrement � and
the propagation length L of the SEMWs

� = 
Im
��
 =
c2
kx
cos � tan2 �

4��d2
, �27�

L =
4�2��d2

��1 + �2c
kx
tan2 �
�28�

at

1 � tan2 � �
2��d2

c
� 2

�1 + �2
. �29�

Let us make the numerical calculations of � and L at giga-
hertz �GHz� and THz frequencies for copper wires at �p
�1.6�1016 s−1, d2=10−5 m, �1=1, �2=2, and �=85°. For
kx=103 m−1 at ��20 GHz we have ��1.5�107 s−1

�� /�p�10−9� and L�1.4 m. For kx=5�104 m−1 at �
�1 THz we have ��7.7�108 s−1 �� /�p�5�10−8� and
L�2.8�10−2 m. One should pay special attention to suffi-
ciently large values L and small decay lengths �� of the
SEMWs. For example, at GHz frequencies we have �1��2
�0.6�10−2 m and at THz frequencies we have �1��2
�10−4 m. For comparison we note that in Ref. 12 the THz
SPPs at the air/gold interface are experimentally investi-
gated. It has been found that the SPP propagation length is
about 1.8�10−2 m and the SPP air decay length is larger
than 1.6�10−2 m. Besides, it should be noted that the z
component value of the electric field of the additional
SEMW is small as compared to the x-component value of the
electric field of the SEMW with Ez=0. Indeed, for above-
mentioned parameters of the wires and the dielectric media
we find that 
Ez�0�
 / 
Ex�0�
�10−4 at GHz and THz frequen-
cies.

III. EXCITATION OF THE SEMWs BY THE
TRANSITION-RADIATION EFFECT

Now examine the case where SEMWs considered above
�at �→�� can be excited using the transition-radiation effect
of an electron that moves along the normal to the interface.
Let an electron move from dielectric 1 to dielectric 2 at a
velocity v0�c. The electron-charge density Q is determined
by the formula

Q�r�,t� = e��x���y − v0t���z� , �30�

where ��x� is the Dirac delta function. The electromagnetic
fields of the electron are expressed in terms of Fourier inte-
grals

E� �
e�r�,t� =� E� �

e�k�e,��exp�i�k�er� − �t��dk�ed� , �31�

where k�e= �kx ,ky
e ,kz�. The Fourier components E� �

e�k�e ,�� and
H� �

e�k�e ,�� for a single electron are8

E� �
e�k�e,�� =

ei

2�2��

���v�0/c2 − k�e

�ke�2 − �2��/c2��ky
ev0 − �� , �32�

H� �
e�k�e,�� =

c

�
�k�e,E� �

e�k�e,��� . �33�

We assume that the radiation field is the superposition of
electromagnetic waves �EMWs� of E—and H types. The
components of E-type EMWs are

�Ex�
�E�,Ey�

�E�,Ez�
�E��, �Hx�

�E�,0,Hz�
�E�� . �34�

The components of H-type EMWs are
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�Ex�
�H�,0,Ez�

�H��, �Hx�
�H�,Ey�

�H�,Hz�
�H�� . �35�

The radiation fields of both types we expressed in terms of
the following Fourier integrals:

E� �
�E,H��r�,t� =� E� �

�E,H��	� ,��

�exp�i�	�
� + ky�y − �t��dkxdkzd
�

v0
, �36�

where ky� are defined in Eq. �3�. From the Maxwell Eqs. �4�
and �5� we obtain the following expressions for the Fourier
components of electric and magnetic fields of E and H types:

Ey�
�E��	� ,�� = −

	2

ky�kx
Ex�

�E��	� ,�� , �37�

Ez�
�E��	� ,�� =

kz

kx
Ex�

�E��	� ,�� , �38�

Hx�
�E��	� ,�� =

���kz

ckxky�

Ex�
�E��	� ,�� , �39�

Hz�
�E��	� ,�� = −

���

cky�

Ex�
�E��	� ,�� , �40�

Ez�
�H��	� ,�� = −

kx

kz
Ex�

�H��	� ,�� , �41�

Hx�
�H��	� ,�� = −

ckxky�

�kz
Ex�

�H��	� ,�� , �42�

Hy�
�H��	� ,�� =

c	2

�kz
Ex�

�H��	� ,�� , �43�

Hz�
�H��	� ,�� = −

cky�

�
Ex�

�H��	� ,�� . �44�

The superposition of the electron fields in Eqs. �32� and �33�,
and transition radiation fields in Eqs. �37�–�44� must satisfy
the boundary conditions which are analogous to Eqs.
�8�–�10�


Dy�y=0 = 4�en2D, �45�


Ex�y=0 = 0, Ez�
e �0� + Ez�

�E��0� + Ez�
�H��0� = 0, �46�


Hx�y=0 = −
4�

c
jz
2D, 
Hy�y=0 = 0, �47�


Hz�y=0 = 0. �48�

Here the braces denote the discontinuity of a corresponding
field component. Upon substituting Eqs. �32�, �33�, and �37�–
�44� into the boundary conditions �45�–�48� we obtain the
following expressions for the Fourier components Ex�

�H��	� ,��
and Ex�

�E��	� ,��:

Ex1
�H��	� ,�� = Ex2

�H��	� ,�� = Ex
�H��	� ,�� =

�2kz
2�1�	� ,��

c2	2�0�	� ,��
,

�49�

Ex�
�E��	� ,�� =

kx
2

kz
2Ex

�H��	� ,�� − Ex�
e �	� ,�� , �50�

where ky
e =� /v0

�0�	� ,�� =
1

ky2
��2

c2 �2 − kz
2� −

1

ky1
��2

c2 �1 − kz
2� . �51�

�1�	� ,�� = �2� 1

ky2
−

1

ky
e�Ex2

e �	� ,�� − �1� 1

ky1
−

1

ky
e�Ex1

e �	� ,�� .

�52�

The rest of the radiation-field components can be expressed
in terms of Ex�

�H��	� ,�� and Ex�
�E��	� ,�� using Eqs. �37�–�44�.

Besides, we can obtain the following expression for the sur-
face current density jz

2D�	� ,��:

jz
2D�	� ,�� =

�	2

4�kxkz
�� �2

ky2
Ex2

e �	� ,��

−
�1

ky1
Ex1

e �	� ,��� −
kx

2

kz
2� �2

ky2
−

�1

ky1
�Ex

�H��	� ,��� .

�53�

From Eq. �51� it is evident that the value �0�	� ,�� in the
denominators of Eqs. �49� and �50� is the dispersion relation
of the SEMWs previously described. In order to derive the
spatial and time dependencies of the SEMW fields in the
explicit forms, we need to integrate expressions �37�–�44�
with respect to kx, kz, and � taking into account the poles of
integrands in Eqs. �49� and �50�.13 As a matter of fact, it
means that the electron traversing the infinite one-
dimensional array of parallel thin metal wires placed in the
interface plane of two different dielectrics can excite the
SEMWs. Note that the SEMWs excitation is caused by that
of the surface current �with the Fourier component in Eq.
�53�� in metal wires.

IV. EXCITATION OF THE SEMWs BY THE
BEAM-INSTABILITY EFFECT

Let an electron beam propagate in the half space y�0 in
the positive Ox direction at a velocity v0�c. We suppose
that the electron-beam width is much larger than the wave-
length of the SEMW excited. Therefore, we will consider the
electron beam as a semifinite one that occupies all half space
y�0. As indicated in the previous section, we assume that
�→� and the radiation fields in both half spaces to be the
superpositions of E—and H-type EMWs with components in
Eqs. �34� and �35�.

We consider that the spatial and time dependencies of
E—and H-type EMW fields are harmonic ones, i.e., they are
specified in the same way as the fields in Eqs. �1� and �2�. In
half space 2 the EMWs obey homogeneous Maxwell Eqs. �4�
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and �5� at �=2. In the half space 1 we describe the fields
using the Maxwell equations concurrently with the linearized
continuity and motion equations in small velocity- and
electron-density-related perturbations v��r� , t� and n�r� , t�. The
corresponding set of coupled equations are

� � H� 1 =
1

c

�E� 1

�t
+

4�

c
j�B�r�,t�, � � E� 1 = −

1

c

�H� 1

�t
,

�54�

div E� 1 = 4�n�r�,t�, div H� 1 = 0, �55�

�n�r�,t�
�t

+ n0 div v��r�,t� + div�n�r�,t�v�0� = 0, �56�

�v��r�,t�
�t

+ v�0
�

�r�
v��r�,t� =

e

m0
�E� 1 +

1

c
�v�0,H� 1�� , �57�

where j�B is the electron-beam current-density perturbation

j�B�r�,t� = en0v��r�,t� + en�r�,t�v�0 �58�

n0 is the mean electron-beam density, v�0= �v0 ,0 ,0�. Note
that Eqs. �54�–�58� is the starting point for the general analy-
sis of the beam-instability effects. Solving the equation set in
Eqs. �54�–�58� we obtain the following expressions for the
components of the electron-beam current-density perturba-
tions:

jxB =
ie2n0�Ex1

m0�� − kxv0�2 +
ie2n0kzv0

m0�� − kxv0�2�Ez1 +
v0

c
Hy1�

+
e2v0

m0�� − kxv0�2

�

�y
�n0�Ey1 −

v0

c
Hz1�� , �59�

jyB =
ie2n0

m0�� − kxv0�
�Ey1 −

v0

c
Hz1� , �60�

jzB =
ie2n0

m0�� − kxv0�
�Ez1 +

v0

c
Hy1� . �61�

Substituting Eqs. �59�–�61� into the first curl equation in Eq.
�54� and integrating with respect to y in the near vicinity of
the point y=0, we obtain the expression for the discontinuity
of the Hz filed component crossing the interface plane �see
Ref. 14�


Hz�y=0 =
4�

c
lim
�→0

�
−�

�

jxBdy

= −
�B

2 v0

c�� − kxv0�2�Ey1�0� −
v0

c
Hz1�0�� , �62�

where �B=�4�e2n0 /m0 is the electron-beam plasma fre-
quency. The simultaneous solution of boundary conditions
�46�, �47�, and �62� yields the dispersion relation for the
coupled SEMWs

�0�	� ,���� − kxv0�2 =
�B

2 v0

cky2
��

c
kx −

v0

c
��2

c2 − kz
2�� ,

�63�

where �0�	� ,�� is defined by Eq. �51�

ky1 = − i�	2 −
�2

c2 , ky2 = i�	2 −
�2

c2 �2. �64�

It should be stressed that relation �63� is valid for a weak
electron-beam density where the following conditions are
met:15

�B � �� � � , �65�

where �� is the instability increment for the coupled
SEMWs. To derive the instability increment it is necessary to
represent the wave frequency � as

� = �R + �� , �66�

where 
��
��R and �R is the resonance frequency at which
the following conditions hold true:

�R = kxv0, �0�	� ,�R� = 0. �67�

Substitution of Eq. �67� into Eq. �63� and the subsequent
expansion in series of �� leads to the cubic equation in ��
with real coefficients if the absorption is neglected. Another
words, we obtain one real and two complex conjugate roots,
and one of the complex roots corresponds to the beam-
induced instability with the following increment:

�� =
�3

2
� �B

2 v0	4

�2kx�kx
2 + 	2��1/3

, �68�

where �2v0
2 /c2�1. For the SEMWs propagating almost per-

pendicular to the wires expression �68� can be simplified as

�� 	
�3

2
��B

2 kxv0

2�2
�1/3

. �69�

We demonstrate that it is exactly the SEMWs propagating
almost perpendicular to the wires are excited by the beam.
Indeed, from Eqs. �15� and �67� we can get the resonance
angle �R for excited waves by equating frequency ��−� to the
�R. As a consequence, we have

�R =
�

2
−

v0

c
�1 + �2

2
+ O�v0

2

c2� . �70�

It should noted that, as seen from Eq. �70�, the electron beam
propagating perpendicular to the wires tend to excite the
well-bounded SEMWs with dispersion relation in Eq. �17�.

Now we present the results of the numerical calculations
of �� and �R for the THz-frequency region. For the widely
used parameters,14 kx=5�104 m−1, v0=0.1c ��R�1.5
�1012 s−1�, and n0=1015 m−3 ��B�1.8�109 s−1�, �2=2,
we find that ���9.2�109 s−1 and �R�85°.

V. CONCLUSION

In this paper we have theoretically analyzed the possibil-
ity of SEMWs propagation along a flat interface between the
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two different dielectric media in the case where an one-
dimensional array of thin metal wires is placed at the inter-
face. Our supposition was that the distance between the
neighboring wires is far less than the wavelength and the
surface wave frequencies are far lower than the plasma fre-
quency of a metal. The existence conditions, dispersion rela-
tion, energy flux, and angle distribution of the SEMWs fre-
quency have been derived. Specifically, the wave
propagation is shown to be excluded when the array of wires
is sandwiched between two identical dielectrics. In addition,

it has been found that the SEMWs are well bounded and the
highly delayed ones in both dielectric media mainly in
propagation directions almost perpendicular to the wires. We
have shown that it is possible to excite the SEMWs by means
of the transition-radiation and beam-instability effects. Be-
sides, one can expect the SEMWs to propagate at long dis-
tances due to negligible energy losses in surrounding dielec-
tric media. These facts along with the simple interface design
open up the possibility of practical applications of the
SEMWs.
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